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Damage detection using changes in global dynamic characteristics has been a hot research
topic and attracted civil, aerospace, and mechanical engineering communities in recent
years. In this paper, a numerical study of the relationship between damage characteristics
and the changes in the dynamic properties is presented. It is found that the rotation of mode
shape is a sensitive indicator of damage. The numerical results clarify that the rotation of
mode shape has the characteristic of localization at the damaged region even though the
displacement modes are not localized. Also, the results illustrate that the rotations of modes
are robust in locating multiple damage locations with di!erent sizes in a structure.
Furthermore, using the changes in the rotation of mode shape does not need very "ne grid of
measurements to detect and locate damage, e!ectively.

� 2002 Elsevier Science Ltd.
1. INTRODUCTION

Structural systems are susceptible to structural damage over their lives due to many factors,
such as, operating loads, fatigues, and corrosion. Undetected damage can result in the
failure of the components of the structure, including fracture in tension or instability under
compression, which are very costly in terms of human life and property damage. So, it is
very essential and important to ensure the integrity and safety of structures [1]. Therefore,
health monitoring of structures has been attracting much attention from civil, aerospace,
and mechanical engineering communities in recent years.

Modal vibration test data, such as structural natural frequencies and mode shapes, can
characterize the state of the structure [2]. Over the past three decades, detecting damage in
a structure from changes in global dynamic properties has received considerable attention
of civil, aerospace, and mechanical engineering communities. This is attributed to the fact
that damage in the form of changes in the structural physical properties (i.e., sti!ness, mass,
and damping) will, in turn, alter the vibration properties of the structure such as, modal
frequencies, mode shapes, and modal damping values. The change in the vibration
properties can then be used as indicators of damage detection. Techniques of detecting
damage in a structure by monitoring these changes have attracted much attention in recent
years, and many approaches have been developed.

The use of the natural frequency and mode shape variations of a structure to determine
global defects and deterioration has been investigated extensively [3}5]. Numerous studies
have indicated that an increase in structural damage re#ects a decrease in natural
frequencies of the structure. Salawu [6] gave a literature review of the state of the art of
0022-460X/02/120227#13 $35.00/0 � 2002 Elsevier Science Ltd.
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damage detection using changes in natural frequency. Actually, the changes in frequency
imply the presence of crack or damage in a structure. However, determining the location of
the crack, knowing the changes in the frequencies, is a completely di!erent question. This is
because, e.g., cracks at two di!erent locations associated with certain crack length may
cause the same amount of frequency change.

It was found that changes in the mode shapes of the structure were more sensitive
indicators of damage than natural frequencies [7]. Yuen [8] showed that for a cantilever
beam there was a systematic change in the "rst mode shape with respect to the damage
location. He used "nite element analysis to obtain the natural frequencies and the mode
shapes of the damaged structure. Analyzing a beam, Pandey et al. [9] demonstrated the use
of changes in the curvature mode shape to detect and locate damage. They also found that
both the modal assurance criterion (MAC) [10] and the co-ordinate modal assurance
criterion (COMAC) [11] were not sensitive enough to detect damage in its earlier stages.
Chance et al. [12] found that measuring curvature directly (by measuring the strain) gave
very improved results than the curvature calculated from the displacements. Also, Chen and
Swamidas [13] found that strain mode shapes facilitated the location of a crack in
a cantilever plate using "nite element method simulation. Yam et al. [14] have found that
the strain mode shape is more sensitive to structural local changes than the displacement
mode shape. Quan and Weiguo [15] showed that for the steel deck of a bridge, the
curvaturemode shapes are the best among three damage recognition indices based on mode
shapes (the COMAC, the #exibility, and the curvature mode shape). In addition, they found
that some "rst vibration mode shapes, whatever vertical or horizontal modes, could be used
equally to detect damage in the steel deck.

Indeed, it was di$cult to measure the rotation of mode shapes in the past. So, most of the
researchers have considered only the displacement mode shape as a reference to analyze the
dynamic behaviour of the structures. However, in recent years, major advances have been
realized in the "eld of structural dynamics and mechanical vibration measurements. The
introduction of Scanning Laser Doppler Vibrometer (SLDV), has revolutionized dynamic
testing and analysis due to its advantages such as its fast scanning capability and its
non-contacting feature. Furthermore, the implementation of a six-degree-of-freedom
dynamic data acquisition and visualization system currently is being developed [16]. Since
the rotation of mode shapes may be feasible to be measured in the near future, the changes
of rotation of mode shapes are investigated here to detect and locate structural damage.

The objective of this paper is to clarify the relationship between damage characteristics
(location, size), and the changes in the rotation of the mode shapes. A careful numerical
study is carried out by using the "nite element method to analyze dynamic behaviour of
damaged structural members. Furthermore, to examine the limitations of using this index
to detect damage, several sets of coarser grids of measurements are used.

2. THEORY

2.1. ONE-DIMENSIONAL BAR

2.1.1. Strain (slope) of mode shape

For simplicity, we "rst consider a one-dimensional bar to study the change in the
dynamic characteristics due to the presence of damage. The bar is simply supported. The
length and cross-sectional area of the bar are ¸ and A, and the Young's modulus and the
density are E and � respectively. Damage is modelled as a loss in the Young's modulus by
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�E, and the damaged zone is x
�
!h/2(x(x

�
#h/2 with h/¸�1. The natural frequency

� and the corresponding displacement mode (u) are obtained by solving
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(1)

where c�"(E!�E)/� for x
�
!h/2(x(x

�
#h/2 and c�"E/� otherwise. If we expand

� as � (h)+�#h�� and u as u (x, h)+u(x)#h�u(x), it is well expected that �(h)
approaches � and u(x, h) approaches u as h goes to zero. However, if A is constant, strain
� does not admit such an expansion. The continuity of the stress at the intersection of
undamaged and damaged parts, e.g., at x

�
!h/2 leads to E��"(E!�E )��. Here,

superscript l or r indicates the left or the right of the intersection. The amount of strain
discontinuity [�]"���!�� �, is easily evaluated by approximating the above stress as
�"E��(x

�
), where ��(x

�
) is the strain of the intact bar at x

�
. That is

[�]+�
E

E!�E
!1� ���(x

�
) � . (2)

It is of interest to mention that the strain here is the "rst derivative of the displacement
mode, or the slope of the mode shape. In Figure 1, the "rst four modes of displacement and
slope are plotted for a case of ¸"A"1, and the damaged parameters are �E"0)2E,
h"0)001¸, and x

�
"0)6¸. Also, the "rst four modes of displacements and slope for the

same characteristics of damage but at the middle of the bar, i.e., x
�
"0)5¸ are plotted in

Figure 2. In view of equation (2), we can expect that the change in the strain mode is more
sensitive to the damage than the change in both the frequency and the displacement mode,
Figure 1. Displacement and slope of mode shapes of a bar element (x
�
"0)6¸): (a) "rst mode; (b) second mode;

(c) third mode; (b) fourth mode.



Figure 2. Displacement and slope of mode shapes of a bar element (x
�
"0)5¸): (a) "rst mode; (b) second mode;

(c) third mode; (b) fourth mode.
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since the strain mode has a spike at the damage (x"x
�
). The width of the spike is h and the

height of the spike is related to �E; the spike becomes sharper as h decreases and the height
increases as �E increases. If ��(x

�
) is small, however, such a localized spike does not appear.

These observations can be seen clearly in Figures 1 and 2. This suggests that we have to seek
and use the more sensitive modes to detect damage throughout the bar.

2.1.2. Choice of the mode shapes

In Figures 1 and 2, almost all "rst four slopes of mode shapes can detect the damage
except the "rst and third modes in Figure 2. This implies that these two modes are not
sensitive to this damage. So, it is very important to "nd which modes to be used in damage
detection. However, if all modes are used, the indication of damage may be masked by
modes that are not sensitive to the damage. Since the change in the natural frequency of the
mode i of a structure due to a localized damage is a function of the position vector of the
damage, e.g., p and the reduction in sti!ness caused by the damage �K [4], then

��
�
"f (�K, p) . (3)

Expanding this function about intact state (�K"0), and neglecting higher order terms,
yields

��
�
"f (0, p)#�K

� f
� (�K)

(0, p). (4)

But f (0, p)"0 for all p since there is no frequency change without damage. Hence,

��
�
"�K g

�
(p). (5)



Figure 3. Changes in frequencies for the "rst four modes of a bar element: (a) x
�
"0)6¸, (b) x

�
"0)5¸.
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From equation (5) it can be deduced that for the same amount of �K, modes that have
higher changes in frequencies will have larger position vector and consequently, they are
expected to be more sensitive to the existing damage. Figure 3(a) and (b) illustrates the
changes in the natural frequencies of the "rst four modes of the bar element at x

�
"0)6¸ and

x
�
"0)5¸ respectively. It is shown that higher changes in the natural frequencies indicate

more localized strain modes at the damaged region and vice versa.

2.2. BEAM ELEMENT

In a similar manner, we consider a beam element to examine the above observations. The
beam is simply supported, and has the sti!ness K"EI with E and I being the Young's
modulus and the second moment of the cross-section respectively. A narrow zone of
damage is assumed at x

�
!h/2(x(x

�
#h/2 with the sti!ness K!�K.

As h goes to zero, the natural frequency as well as the associated displacement, slope,
bending moment, and shear force approach those of the intact beam. However, the
curvature at the intersection su!ers a jump; for instance, at x

�
!h/2, the curvature satis"es

M#h�M"K��"(K!�K)��, where � and M stand for the curvature and bending
moment. Again, by approximating M as K��(x

�
), the jump of the curvature is evaluated as

[�]+�
K

K!�K
!1� ���(x

�
) �. (6)

Since h is small, this jump leads to a spike in the curvature of mode shape, its height is
related to �K and ��. The above example of the beam element shows that the curvature
mode shape is more suitable than the natural frequency and the displacement mode in
detecting the location and the magnitude of damages. This emphasizes the observation that
the derivatives of the mode shapes are localized and more sensitive than the displacement
modes.

As a strain (slope) of mode shape is a good indicator of the bar, it is well expected that the
rotations of mode shapes are good damage indicators for a plate member as well. We will
examine this in detail, using the numerical computation in the next sections.

3. ANALYTICAL MODEL

As a practical example, the model chosen for this study is a steel plate. The background of
this example is related to engineering applications in the construction of bridges, cranes,
ships, etc. Since the stress concentration in the plate often occurs at the supported edges, the
study of the dynamic stress concentration of a plate which su!ers from failure at its



Figure 4. Finite element model of the steel plate: (a) cantilever plate: =�=, supported nodes; (b) simply
supported plate: =�=, supported nodes.

TABLE 1

Damage characteristics of steel plate model

Damage characteristics Cantilever plate
(clamped, free, free, free)

Simply supported plate
(simply, free, simply, free)

Case-I Case-II Case-I Case-II

Number of damage(s) 1 2 2 2
Location of damage(s) Middle Ends One edge only Two edges
Damage size 10% 5#5% 2)5#7)5% 2)5 #7)5%
Total amount of damage 10% 10% 10% 10%
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connection(s) is of general signi"cance. So, damage is mainly introduced at the supported
edge(s) to represent the failure, e.g., in a welded connection of a structure.

The dimensions of the plate are 20�20�0)25 in, i.e., 508�508�6)35 mm and the
mechanical properties of the plate are, Young's modulus, E"210 GN/m�, Poisson ratio,
�"0)3, and the density, �"7850 kg/m�. Figure 4 illustrates the "nite element model of the
steel plate. The pre-damage and post-damage modal parameters were calculated
numerically using the software package Marc/Mentat [17, 18]. Four-node shell element
with six degrees of freedom (d.o.f.) per node, three translations and three rotations (;

�
,;

�
,

;
�
, 	

��
	
��

	
�
), are used. The convergence of the natural frequencies, displacement mode

shapes and strain mode shapes were checked via comparison of di!erent meshes and the
"nite element model consists of 40�40 elements, and 1681 nodes.

Two examples are studied to examine the e!ect of the boundary conditions; a cantilever
and a simply supported plate, as shown in Figure 4. The "rst example is a cantilever plate
which is clamped (all six d.o.f are restrained) at one edge, atX"0 in and free otherwise. The
second example is a plate which is simply supported (only the three translations, ;

�
, ;

�
,

;
�
, are restrained) at two edges, at X"0 and 20 in and free otherwise. Table 1 shows the

damage characteristics of the steel plate model. Actually, damage is mainly modelled as
a part of free boundary at the damaged regions of the connection(s) of the plate, i.e., the
damage is represented by free six d.o.f. at the damaged nodes.

The degree of damage (damage size) is related to the ratio between the length of the
damaged region and the total length of the supported edge. For Case-I of the cantilever
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plate, the three nodes 20, 21, and 22 at the middle of the clamped edge are set for damage,
but for Case-II, the nodes 1, 2, 40, and 41 at the end of the clamped edge are set for damage.
On the other hand, for Case-I of the simply supported plate, the damage is in#icted to one
edge at nodes 1, 39, 40, and 41, but for Case-II, the damage is in#icted to both of the two
supported edges simultaneously at nodes 1, 1679, 1680, and 1681. Indeed, two cases of
damage are studied for each example to represent not only di!erent locations but also
di!erent sizes. It is of interest to mention that for the cantilever plate, the damage is
introduced symmetrically to the clamped edge to represent one or two damages with the
same size, but for the simply supported plate the damage is introduced asymmetrically with
damage ratio 1 : 3 to represent multiple damage locations with di!erent sizes.

A further study was carried out to investigate an additional scenario of damage for the
cantilever plate model. In this scenario, the change in the sti!ness due to damage was
modelled as a reduction in the modulus of elasticity (E) of two elements. Since this type of
damage is not consistent with pre-mentioned scenarios of damages in the above examples,
the results of this scenario are given in Appendix A. This additional scenario of damage
con"rms the generality and capability of damage detection method using the changes in the
rotation of mode shape to detect and pinpoint di!erent types of damage.

4. ANALYSIS OF RESULTS

The damage of the model in this study is assumed to a!ect only the sti!ness matrix but
not the inertia matrix in the eigenproblem formulation. This assumption is consistent with
those used by Cawley and Adams [4], Yuen [8], and Pandey et al. [9]. Thus an eigenvalue
problem of "nding the natural frequencies and the displacement mode shapes is

(K!

�
M)x

�
"0, (7)

in whichK andM are the sti!ness and mass matrices of the intact structure, 

�
and x

�
are the

ith eigenvalue and displacement eigenvector of the intact structure respectively. However,
when K is changed, equation (7) becomes

(K�!
�
�
M)x�

�
"0, (8)

in which K� is the sti!ness matrix of the damaged structure, 
�
�
and x�

�
are the ith eigenvalue

and displacement eigenvector of the damaged structure respectively.
The eigenmodes calculated are orthogonal with respect to the inertia matrix M,

i.e., x�
�
Mx

�
"1. Since the rotation around Z-axis, 	

��
is very small for thin plates, only

rotations around the X-axis, 	
��

and >-axis, 	
�
are taken into consideration. These two

rotations are normalized with respect to the square root of the sum of squares (SRSS). The
maximum slope at any point of a thin plate can be calculated as [19]

Maximum slope"�(	
�
)�#(	

�
)� . (9)

So, for the sake of generality in this study, the following invariant is used for rotation at
the jth node of the ith mode shape:

R
��
"�(	

�
)�
��
#(	

�
)�
��
. (10)

5. NUMERICAL RESULTS AND DISCUSSIONS

The "rst "ve frequencies and mode shapes for the intact and damaged plate are studied
for the pre-mentioned two examples, cantilever and simply supported plate with 10% loss



TABLE 2

¹he percentage decrease in the natural frequencies due to 10% damage in the connection(s)
of the model.

Decrease in frequency (%)

Cantilever plate
(clamped, free, free, free)

Simply supported plate
(simply, free, simply, free)

Mode number Case-I Case-II Case-I Case-II

1 0)4999 0)2767 0)0803 0)0803
2 0)0008 0)7762 0)4798 0)4798
3 0)2629 0)6421 0)5643 0)5625
4 0)2210 0)1214 0)1233 0)1267
5 0)0011 0)8706 0)4023 0)3988
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in their connection(s). As mentioned before, these two examples represent di!erent damage
sizes and multiple damage locations. Furthermore, an additional scenario of damage is
in#icted, as a 5% reduction in the modulus of elasticity (E), to both the elements 1561 and
1600. The results of this scenario are discussed in Appendix A.

5.1. NATURAL FREQUENCIES AND DISPLACEMENT MODE SHAPES

The percentage change in the "rst "ve natural frequencies of cantilever and simply
supported plate for di!erent cases of damage at the connection(s) of the plate model are
shown in Table 2. It is clear from this table that there is a discernible change in the natural
frequencies between the intact and damaged plate, but this does not give an indication of the
location of damage. This is expected because natural frequencies represent the dynamic
characteristics of the whole structure. However, it is important to mention that the
decrements of natural frequencies are very small for the second and "fth modes in Case-I of
the cantilever plate. This is attributed to the fact that these modes are antisymmetric modes
(twisting modes), and consequently the node lines of these modes pass through the region of
damage. The same thing can be said about the "rst and fourth modes in Case-II of the
cantilever plate and both the cases of the simply supported plate, where the node lines pass
through the damaged regions at the ends of the supported edges.

The absolute di!erences of the "rst displacement mode shapes between the intact and
damaged cantilever plate for Case-I and Case-II are plotted in Figure 5(a) and (b)
respectively. It can be easily seen that the damage cannot be located by the changes in the
displacement modes. Similar results are obtained for the two cases of the simply supported
plate. Again, this is because the lower modes are global in nature and hence will change
globally even due to a local change such as failure at the connection(s).

5.2. ROTATION OF MODE SHAPES

The absolute di!erences of the "rst rotation of mode shapes between the intact and
damaged cantilever plate for Case-I and Case-II are plotted in Figure 6(a) and (b)
respectively. Similarly, the absolute di!erences of the "rst rotation of mode shapes for the
two cases of the simply supported plate are plotted in Figure 7(a) and (b) respectively. From



Figure 5. Absolute di!erences of the "rst displacement modes between the intact and damaged cantilever plate
with 10% local failure: (a) Case-I; (b) Case-II.
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Figure 6. Absolute di!erences of the "rst rotation of mode shapes between the intact and damaged cantilever
plate with 10% local failure: (a) Case-I; (b) Case-II.

Figure 7. Absolute di!erences of the "rst rotation of mode shapes between the intact and damaged simply
supported plate with 10% local failure: (a) Case-I; (b) Case-II.
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these two "gures, it can be easily seen that the rotations of mode shapes are localized at the
damaged region for all cases of damage; one damage, two damages with the same size, and
two damages with di!erent damage sizes. It is important to mention that each component
of the rotation, i.e., 	

�
or 	

�
gives as good results as the invariant of rotation which is given in

equation (10).
In the previous analysis, it was assumed that the mode shapes were known exactly on

a very "ne grid of measurements. But, in actual practice this will obviously not be the case.



Figure 8. Changes in rotations of mode shapes for Case-I of the cantilever plate with di!erent grids of
measurements:=�=, step X"0)5 in, =�=, step X"2)0 in.
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So, reduced sets of data were used to determine how the results change using coarser grids
of measurements. The step of measurements in the X direction is increased from 0)5 inch to
1)0 and 2)0 in, i.e., the measurements are reduced to approximately one-half and one-quarter
respectively. Figure 8 shows the percentage change in rotation of mode shapes due to
damage versus the mode number for Case-I of the cantilever plate. The change in rotation
here is the absolute value of the ratio between the maximum di!erence in the rotation of
mode shape due to damage and the maximum rotation of the intact case. Change of
rotation can be written as

Change in rotation"�
Max ((R

��
)
	
!(R

��
)


)

Max (R
��
)
	

� , (11)

where, (R
��
)
	
and (R

��
)


are the rotatations at the jth node of the ith mode for the intact and

damaged plate respectively. In Figure 8 it is noticed that the trend of changes in the rotation
of mode shapes seems to be invariant with increase in the step of measurement in the
X direction. Actually, this means that the rotation mode shape is stable and not so sensitive
to the reduction in data of measurements in the X direction. This can be interpreted as
the rotation of mode shape is measured directly and not calculated approximately from the
displacement modes.

Also, it is observed that the trend of the changes in the rotation is in agreement with the
trend of those changes in the natural frequencies. This proves that modes which have higher
changes in natural frequencies are more sensitive to the damage and induce higher changes
in the rotation of mode shape. Consequently, these modes are useful in determining the
location of damage.

In the above analysis, it is assumed that the baseline for comparison is the intact case. To
consider the extension of damage from a damaged plate to another severe damaged one, the
changes in the rotation of modes for the cantilever plate are investigated. Figure 9 (a) and (b)
shows the absolute di!erences of the "rst rotation of mode shapes (between the damaged
cantilever plates with 10 and 20% local failure) for Case-I and Case-II respectively. This
"gure re#ects the localization of rotational modes for the extension of damage, considering
the less damaged plate as the baseline case. So, the above results indicate that changes in the
rotation of mode shapes are e!ective and robust in detecting and locating both the
initiation and extension of damage in a structure. Indeed, the usefulness of using changes in
rotation of mode shapes is that they are localized at the damaged region and they have



Figure 9. Absolute di!erences of the "rst rotation of mode shapes between the damaged cantilever plates with 10
and 20% local failure: (a) Case-I; (b) Case-II.
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approximately zero values beyond the damaged region using only lower eigenmodes which
can be easily measured experimentally. Even with only the "rst mode of the plate, i.e., the
lowest frequency mode, the damage location can be accurately located.

6. SUMMARY AND CONCLUSIONS

Changes in the rotations of mode shapes due to the presence of structural damage,
represented here in a numerical "nite element model, have been investigated. The results of
the steel plate model demonstrate the usefulness of the changes in the rotation of mode
shape as a diagnostic parameter in detecting and locating damage in the connection(s) of
the steel plate with di!erent boundary conditions. It is shown that changes in the derivative
(rotation or slope) of the mode shapes are more sensitive than the changes in the
displacement mode shapes. Also, it is found that the rotation of mode is localized in
the region of damage for initiation or extension of damage. The robustness in using changes
in the above index is that it does not need higher modes of the structure to be used.
Furthermore, this method has the ability to pinpoint a small amount of damage (5%
reduction in the modulus of elasticity) in two small elements, as shown in Appendix A.

It is found that higher changes in the natural frequencies imply sensitive and more
localized strain and rotation of modes at the damaged region. With a good choice of the
mode shapes, the damage location can be accurately located even with only one mode of the
structure, i.e., one of the lower frequency modes. On the other hand, it has also been shown
that the rotation of mode shape is more stable beyond the damaged region and does not
need "ne grid of measurements for damage detection. Finally, due to the major advances in
the "elds of structural dynamics and experimental modal analysis, the rotation of mode
shape is promising in detecting and locating damage in structures.
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APPENDIX A: ADDITIONAL SIMULATION OF DAMAGE TO THE PLATE MODEL

A further study was carried out to investigate an additional scenario of damage for the
cantilever plate model. The change in the sti!ness due to damage was modelled as
a reduction in the modulus of elasticity (E) of some elements. The damage is introduced as
a 5% reduction in the modulus of elasticity of both elements 1561 and 1600, at the corner of
the free edges, as shown in Figure 4. The reason for choosing these elements is that they are
located at the free edge, i.e., they have very small stress and strain, which is opposite to the
above scenarios of damages.
Figure A1. Absolute di!erences of the second mode between the intact and damaged (5% reduction in E in
members 1561, 1600) cantilever plate: (a) displacement; (b) rotation.
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Because the damage here is very small, the corresponding changes in the natural
frequencies are as follows: 0)0002% for the second mode, 0)0006% for the "fth mode, and
zero for the other modes. On the other hand, the changes in the displacement mode shapes
are found to be zero for the "rst mode, and global for the other modes. This can be easily
seen in Figure A1(a), which illustrates the absolute di!erences of the second displacement
mode shape between the intact and the damaged (5% reduction in E in both elements 1561
and 1600), cantilever plate.

The changes in the rotations of mode shapes are found to localize at the damaged
elements. Figure A1(b) illustrates the absolute di!erences of the second rotation of mode
shape between the intact and the damaged cantilever plate. This additional scenario of
damage emphasizes the generality and capability of the damage detection method using the
changes in the rotation of mode shape to detect and to pinpoint di!erent damage
characteristics.
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